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1.  Executive Summary 

This report details Langland Conservation's support to The Pangolin Project in Nyakweri Forest, 

Kenya, focusing on the implementation of an AI-driven remote sensing project to aid in the 

conservation of Giant Pangolins and their habitat. The project, supported by the Connected 

Conservation Foundation, and Airbus, demonstrates a viable workflow for applying accessible, high-

tech solutions to pressing conservation challenges. 

Langland Conservation, in collaboration with The Pangolin Project, has tested an innovative, 

accessible AI-driven process to map indicators of habitat degradation in Kenya's Nyakweri Forest. This 

project, made possible by the Satellites for Biodiversity Award, aims to help protect the recently 

discovered Giant Pangolin population facing severe habitat loss and signpost a replicable set of steps 

for other conservation projects.  

Key achievements and impacts: 

• Developed a replicable, low-code deep learning workflow using ArcGIS Pro and high-resolution 

Pleiades Neo imagery, operable on modest hardware ($4,000 system). 

• Quantified habitat degradation: detected x of linear land partitions, x buildings, and x of 

remaining forest cover in a 1000km² area. 

• Created an AI model to detect key landscape features, overcoming challenges like seasonal 

vegetation changes and lightweight fence structure identification. 

• Demonstrated that sophisticated AI analysis can be performed without relying on extensive 

cloud computing or tech giant partnerships, making advanced conservation technologies more 

accessible to local projects. 

• Established a template for other conservation efforts worldwide, showcasing how existing 

machine learning techniques and high-resolution imagery can address urgent environmental 

challenges with limited resources 

2.  Introduction 

2.1.  Background 

Nyakweri Forest, located in Kenya's Greater Mara Ecosystem, is a critical Afromontane Forest habitat 

that has recently gained significant conservation attention. In 2022, The Pangolin Project made a 



groundbreaking discovery that dramatically altered our understanding of Giant Pangolin distribution 

in East Africa.  

Giant Pangolins (Smutsia gigantea), the largest of all pangolin species, were previously thought to 

have their eastern range limit in Uganda. However, the research published by The Pangolin Project 

revealed the presence of these elusive creatures in Nyakweri Forest, extending their known range by 

500 kilometres15 eastward. This discovery not only underscored the ecological importance of 

Nyakweri Forest but also emphasized its potential role in pangolin conservation. 

Unfortunately, the Nyakweri Forest landscape faces severe environmental challenges. The area has 

experienced dramatic habitat loss over the past decade, with more than half of its forest cover 

disappearing. This rapid deforestation is primarily driven by the conversion of viable habitat into 

partitioned farmland, a process that inflicts irreversible damage on the ecosystem. 

The key threats to Nyakweri Forest and its Giant Pangolin population are the following: 

• Deforestation: Large-scale clearing of forest for agriculture, charcoal production, and human 

settlement. Giant Pangolin have a preference for dense forest habitats with abundant 

populations of ants and termites. 

• Habitat Fragmentation: The remaining forest is increasingly divided into smaller, isolated 

patches. The construction of field boundaries, roads and buildings further encroaches on natural 

habitats and destroys the connectivity between “islands” of remaining viable habitat. 

• Electric Fences: While intended to protect crops from elephants and other raiding species, these 

pose a significant physical threat to pangolins. 

• Poaching: All pangolin species are highly valued for their meat and scales. Pangolin are the most 

trafficked wild mammal globally. 

2.2.  The Pangolin Project 

The Pangolin Project is a non-profit organization based in Kenya, led by Dr. Claire Okell. Dedicated to 

pangolin conservation research and protection, the organization focuses on securing a future for 

African Pangolins in their native landscapes.  

The Pangolin Project's work encompasses four main areas: 

Conservation Research: Conducting practical conservation science to provide evidence-based 

strategies for conserving pangolins in the wild. 

Sustainable Protection: Supporting rangers and anti-poaching teams by developing specific skills and 

knowledge for protecting pangolins and their habitats. 

Community Partnerships: Empowering local communities to act as pangolin custodians through 

education, conservation training, and support activities. 

Awareness and Advocacy: Increasing awareness about pangolins among partners, the conservation 

community, and society at large. 

2.3. Langland Conservation 

Langland Conservation is a UK-registered charity that specializes in using data analytics and 

technology to support a range of conservation partners. Their work focuses on three core aspects: 



• Using data-driven insights to help decision-makers achieve greater results in conservation. 

• Empowering others to leverage technology in conservation efforts. 

• Supporting investigations to tackle organized wildlife crime worldwide. 

In the Nyakweri Forest project, Langland Conservation's role was to conduct a thorough analysis of 
the area and develop and implement an AI-driven remote sensing solution to quantify and visualize 
habitat degradation.  

Their support to The Pangolin Project was led by Chief Technology Officer, Ruari Bradburn, and Head 
of Analytics, Dr. Alice Ball. 

2.4  The Satellites for Biodiversity Award 

The Satellites for Biodiversity Award, a collaboration between Connected Conservation Foundation 
and Airbus, played a crucial role in this project. This initiative, which bridges conservation 
organizations and satellite imagery providers, provided Langland Conservation and The Pangolin 
Project with access to high-resolution Airbus Pleiades Neo 0.3m RGB imagery. This imagery was 
essential for developing the AI model and analysing the Nyakweri Forest landscape. 

The Connected Conservation Foundation, particularly through director Sophie Maxwell, offered 
invaluable support throughout the project. This collaboration exemplifies how partnerships between 
technology providers and conservation organizations can significantly enhance the effectiveness of 
biodiversity protection efforts.  

3. Project Objectives 

3.1. Quantify Habitat Degradation 

The primary aim was to understand and quantify the extent and rate of habitat degradation in the 
Nyakweri Forest Landscape, part of the Greater Mara Ecosystem in Kenya. This objective was crucial 
given the recent discovery of Giant Pangolins in the area and the rapid conversion of viable habitat 
to farmland. 

3.2. Develop AI-Driven Conservation Tools 

A core objective was to develop a Deep Learning model capable of detecting key landscape features: 

1. Artificial Land Partitions & Fence Lines 

2. Tree Cover 

3. Buildings 

This AI model would serve as a powerful tool for analysing large areas quickly and accurately, 

providing vital data for conservation efforts. 

3.3. Inform Conservation Strategies 

By providing detailed, up-to-date information on the landscape, the project aimed to raise awareness, 

help inform protection strategies such as fence de-electrification, and help focus efforts on conserving 

remaining areas of woodland.  

3.4. Demonstrate Accessible Technology Use 

A key objective of this project was to showcase how high-resolution satellite imagery, and AI 

technologies could be leveraged effectively by conservation projects with limited resources. This 



approach aimed to serve as a model for conservation initiatives worldwide, demonstrating that 

sophisticated analysis can be performed without relying on extensive cloud computing resources. 

The project aimed to test and establish a low-code, end-to-end deep learning workflow that could be 

applied to other conservation challenges. This workflow was designed to be accessible to projects 

with modest hardware and technical skills, democratizing the use of advanced technology in 

conservation. 

4. Methodology 

4.1. Imagery 

4.1.2  Data Acquisition 

The Project utilised Airbus Pleaides Neo imagery. All imagery was provided by the Connected 

Conservation Foundation through partnership with Airbus. 

4.1.3.  Imagery Coverage: 

The imagery was received in multiple tranches: 

a. Tranche 1: Covered approximately 450km² of the western side of the study area. 

Comprised of 3 images. Dated 24/08/2023. 

b. Tranche 2: Covered approximately 500km² of the eastern side of the study area. Comprised 

of 2 images. Dated 02/10/2023. 

c. Tranche 3: Covered approximately 130km², including all of the designated Priority 

Conservation Area on the eastern edge of the study area. Comprised of 1 image. Dated 

01/03/2024.  

It's worth noting that the imagery tranches were taken under different seasonal conditions, with Tranches 2 

and 3 appearing much greener than Tranch 1. 

Raw Imagery Products 

   
Tranche 1 Tranche 2 Tranche 3 

 

Two merged products were created: 

a. Merge 2x1: Created by combining Tranche 2 on top of Tranche 1. 

b. Merge 3x2x1: Created by combining Trance 3 on top of Merge 2x1 

 

 



 

 

 

Merged Imagery Products 

  
Merge 2x1 Merge 3x2x1 

 

The resultant file rasters were very large in size. The .tif file for Merge 3x2x1 that was passed to the 
deep learning model for inference totalled 291GB. 

4.1.4. Imagery Characteristics 

The imagery was a 4-band pansharpened product, consisting of: 

a. RGB (Red, Green, Blue) bands 

b. NIR (Near-Infrared) band 

The resolution of the pansharpened imagery was 0.3m, resulting from the fusion of: 

a. 1.2m multispectral (RGB + NIR) data 

b. 0.3m panchromatic data  

Imagery Examples 

   
Tranche 1 Tranche 2 Tranche 3 

 

4.1.5. Multispectral Capabilities 



A single band Normalised Difference Vegetation Index (NDVI) version of Merge 3x2x1 was created, 
totalling 145GB. 

 

 

 

An “NDVI” enhanced view of the rasters were created by overlaying a semi-transparent NDVI view of 

3x2x1 over the RGB version of 3x2x1. This emphasised the areas of negative values in red, areas of 

positive values in green. Areas between -0.2 and 0.2 were left transparent. This was mainly used as a 

working view to assist with the manual production of the training dataset. 

Most deep learning models do not support 4-band imagery, meaning the 3-band RGB images were 

used for the creation of training datasets and deep learning models.  

Whilst it fell out of the scope of this study, it would be highly desirable to export the “NDVI Enhanced” 

View to its own 3-band RGB raster and create a dedicated training dataset and deep-learning model. 

The performance of this model would then be compared against the performance against the raw 

RGB version. 

4.2. Hardware 

The project aimed to demonstrate that sophisticated AI analysis for conservation can be performed 

using a consumer desktop without relying on external cloud computing resources. This approach 

significantly simplified the workflow, but it's important to consider the trade-offs between desktop 

and cloud systems. 

Considerations for Desktop Hardware 

• Essential for general data handling, pre-processing, post-processing, and GIS analysis. Such a 

system, (less the GPU) would be likely required regardless.  

• One-time purchase cost; NVIDIA GPU pays for itself in approximately 135 days of continual 

use. 

• Provides a single tool for end-to-end execution of deep learning workflows and all supporting 

steps 

Comparison between RGB and NDVI Enhanced views 

  
RGB Imagery from 3x2x1 3x2x1 “NDVI Enhanced” View 



Considerations for of Cloud Systems: 

• Scalable on demand  

• Supports multiple GPU clusters for faster training and inference 

• Access to high grade commercial processors and rapid training and inference 

• Portable, can be run remotely 

• Significantly higher skill requirement to configure and execute 

• Likely cheaper inference for a single project 

• Many providers offer limited disk quota (e.g., RunPod's 40GB), which can be prohibitive for 

large imagery datasets. In most cases the raster will be loaded directly into memory using 

libraries like rasterio or GDAL. Such memory availability is usually only available on which 

would high-end, multiple GPU configurations which would have significant cost implications. 

• High costs for active GPU-enabled pods during basic configuration and file upload and 

download. Idle uptime must be minimised. 

Given the experimental nature of this project, in addition to the desire to identify a transferrable and 

replicable workflow within conservation, a local configuration was selected for this project.  

The total cost of the system was $4,025. 

The specifications of the system used are provided here, with prices to illustrate accessibility 

implications: 

Processor: 13th Gen Intel(R) Core(TM) i5-13600K, 3.50 GHz - $320 

• This mid-range modern processor provided sufficient computational power for general data 

processing and model deployment. 

Memory: 64GB Corsair Dominator Platinum DDR4 6600 MT/s – $400 

• Ample RAM allowed for efficient handling of large datasets and image processing tasks.  

• However, being able to load the whole raster into memory would be highly desirable. This 

would require a dedicated build that would go beyond a consumer-grade desktop. 

Storage: Samsung 990 Pro 4TB NVME SSD - $350 

• High-speed storage facilitated quick data access and write operations, crucial for working 

with large imagery files. Use of an NVME SSD drastically improved performance, particularly 

with handling of the training datasets, which are comprised of a very large number of small 

files.  

Graphics Processing Unit: NVIDIA GeForce RTX 4090 24GB GDDR6 (Gigabyte Aero version) - $2,250 

• The GPU was the cornerstone of the system, providing the necessary computational power 

for training and running deep learning models.  

• When training on larger training datasets and running inference on large imagery the use of 

a single NVIDIA 4090 did result in longer than desirable compute times. 



• A system using multiple NVIDIA 4090s would offer a significant improvement and could 

present a cheaper alternative (4 x $2,250 = $9,000) to using a commercial grade alternative 

like the NVIDIA H100 ($42,000). 

Other - $705 

• The system was built in a consumer desktop case ($150), complete with a reliable 1200W 

power supply ($285), CPU watercooler ($160) and an ample number of high-performance 

case fans (5 x $22 = $110). 

4.3. Software 

The project primarily utilized ArcGIS Pro as its core software environment, a choice that significantly 
influenced the workflow and accessibility of the project: 

4.3.1.  ArcGIS Pro Selection: 

• ArcGIS Pro was chosen as the primary software environment for its comprehensive toolset 

and accessibility to non-profit organizations. 

• While private enterprises and governments pay a premium for its features, charitable 

enterprises can access it at a significantly reduced cost, making it a highly attractive option 

for conservation use. 

• ArcGIS Pro provided an integrated environment for the entire workflow. It contains all the 

necessary tools to prepare training data, train deep-learning models, and deploy them. 

• This choice of software contributes to the replicability of the workflow, making it accessible 

to other conservation projects with limited resources. 

4.3.2. Deep Learning Capabilities: 

• ArcGIS Pro has a dedicated Deep Learning Library, which includes PyTorch-based deep 

learning algorithms. This includes a range of RCNN (Region-Based Convolutional Neural 

Network) type architecture used in this project.  

• Various versions of the ResNet base architecture were used during research, with the final 

model produced using ResNext-101 

4.3.3. Post-processing Capabilities: 

• ArcGIS Pro provided tools for post-processing the model outputs, including dissolving 

overlapping output features, removing features below certain size and confidence 

thresholds and smoothing, simplifying, and regularizing output polygons. 

4.3.4. Visualization and Analysis: 

• The software's GIS capabilities were utilized for visualizing results and conducting spatial 

analyses on the detected features. 

4.4.  Deep Learning Model 

4.4.1 Deep Learning Approaches 

In the field of deep learning for computer vision, several approaches are available for analysing 

satellite and aerial imagery, each with its own strengths and use cases. The main approaches include: 



• Image Classification: Assigns a single label or multiple labels to an entire image. 

• Semantic Segmentation: Classifies each pixel in an image into a predefined category. 

• Object Detection: Identifies and locates multiple objects within an image. 

• Instance Segmentation: Combines object detection and semantic segmentation, identifying 

individual instances of objects. 

• Regression: Predicts continuous values (e.g., wind speed, tree height, soil moisture) by analysing 

series of images. 

• Change Detection: Identifies differences between images of the same scene taken at different 

times. 

For our project in the Nyakweri Forest, we selected Object Detection as the most appropriate 

approach. While Semantic Segmentation could have been another suitable method, offering pixel-

level precision for land cover types, we chose object detection due to its ability to provide both 

classification and localization of specific features. This choice was driven by several factors: 

• Feature-specific analysis: Object detection allows for easier identification and analysis of specific 

landscape features (e.g., land partitions, fences, buildings, tree cover). 

• Quantification of discrete elements: Enables straightforward counting of individual instances 

(e.g., buildings) and measurement of dimensions (e.g., fence lengths). 

• Handling of linear features: Better captures orientation and extent of linear elements like fences 

and land partitions, crucial for assessing habitat fragmentation. 

• Spatial relationships: Facilitates analysis of spatial relationships, including overlap, between 

different landscape elements, aiding in habitat connectivity assessment. 

• Ease of analysis: Object detection outputs (bounding boxes with labels) are easier to post-process 

and integrate into GIS workflows compared to pixel-level segmentation data. 

4.4.2 Model Architecture Selection 

Within the object detection paradigm, we chose to use the ResNet (Residual Network) series of 

architecture, specifically ResNet-152 initially and later ResNext-101, as the backbone forour model. 

This choice was based on several factors: 

• Deep Architecture: ResNets can be very deep without suffering from the vanishing gradient 

problem, allowing for more complex feature learning. 

• Residual Learning: The skip connections in ResNets help in training deeper networks more 

effectively. 

• Performance: ResNets have consistently shown strong performance in various computer vision 

tasks, including object detection. 

4.4.3. Acknowledging Transformer Approaches 

It's important to note the distinction between two major approaches in computer vision: 

Convolutional Neural Networks (CNNs) and Transformers.  

CNNs: 



• Use convolutional layers to extract features from images. 

• Are generally faster and more memory-efficient for object detection and segmentation tasks. 

• Work well with smaller datasets and are more interpretable. 

Transformers: 

• Originally designed for natural language processing, now adapted for vision tasks. 

• Use self-attention mechanisms to process the entire image at once. 

• Can capture long-range dependencies in images more effectively. 

• Often require larger datasets and more computational resources. 

The trade-offs between these approaches are significant: 

• Performance: Transformers can achieve higher accuracy in some tasks but may struggle with 

small objects or fine-grained details where CNNs excel. 

• Hardware Requirements: Transformers typically require more memory and computational 

power, eliminating the possibility of their use in a consumer desktop environment for this kind 

of workload. 

• Training Data: Transformers often need larger datasets to perform well, while CNNs can achieve 

good results with smaller, more focused datasets. 

• Inference Speed: CNNs are generally faster for inference, which is crucial when processing large 

satellite images. 

• Flexibility: Transformers are more adaptable to different types of input data and can handle 

variable-sized inputs more naturally. 

Given our project's constraints and objectives - particularly the aim to develop a workflow operable 
on modest hardware - we opted for the CNN-based approaches using R-CNN architectures.  

This choice allowed us to achieve a balance between model performance and hardware efficiency, 
making the technology more accessible to conservation projects with limited resources. These 
approaches also aligned well with our available training data size and the specific nature of our 
segmentation and detection tasks in satellite imagery. 

4.5. Training Dataset Preparation 

The preparation of a high-quality training dataset was crucial for the success of the deep learning 
model. This process involved several key steps and considerations. Image chips measuring 224x224 
pixels (the recommended size for our base architecture).  
 
Once features were fully labelled, a training dataset with a structure tailored to our desired 
architecture was created using the “Export Training Data for Deep Learning” tool within ArcGIS Pro. 



 
4.5.1. Dataset Scope, Size and Composition 
 

• Approximately 7.5% of the total imagery provided was labelled for training. 

• This was distributed across 7 sample areas, totalling about 78km² across the three imagery 

tranches. These areas were manually selected for the a high density and diversity in the desired 

classes, as well as having a high level of representation of the various locale types found within 

the target geography. 

• The labelling process took over 80 hours to complete, with approximately half conducted by two 

volunteers. 

• Partially labelled image chips (where some features were labelled but others were not) were 

found to have a strong negative impact model performance in early tests.  

4.5.2. Feature Classes 

The training dataset included the following distinct classes: 

1. Tree cover 

2. Buildings 

3. Linear land partition features 

4. Fencelines (separated from other partitions in the final version, with visible posts and lack of 

vegetation) 

5. Roads (added in later iterations) 

6. Surface Water (added in the final version) 



7. Clouds (added in the final version) 

In the context of this study, we distinguished between two types of linear land division features: 

partitions and fences. This distinction was important for understanding the landscape structure and 

potential impacts on wildlife movement. 

Partitions are primarily solid, vegetated structures that serve as boundaries between different land 

areas. Key characteristics include: 

• Typically appear as hedges or dense vegetation lines 

• Often wider and more visually prominent in satellite imagery 

• May include a mix of trees, shrubs, and other plants 

• Can provide some habitat and cover for wildlife 

• Usually detectable through their continuous, linear vegetation signature 

Fences, on the other hand, are artificial structures with different visual and ecological characteristics: 

• Primarily detected through posts repeating at regular intervals 

• Generally thinner and less visually prominent than partitions 

• Often lack significant vegetation along their length 

• More likely to be electrified, posing a direct threat to wildlife 

• Detectable through the pattern of posts and, in some cases, visible wire or netting 

The distinction between these two types of features is crucial for several reasons: 

• Wildlife impact: Fences, especially when electrified, can pose a more significant barrier to wildlife 

movement compared to vegetated partitions. 

• Habitat value: Partitions may offer some habitat value and connectivity for certain species, while 

fences generally do not. 

• Detection challenges: The visual differences between partitions and fences necessitated 

different approaches in the AI model for accurate detection and classification. 

• Conservation strategies: Understanding the prevalence and distribution of fences versus 

partitions can inform different conservation strategies, such as removal or de-electrification of 

the bottom strands of wire. 

• It's worth noting that despite these distinctions, the detection and classification of these features 

posed significant challenges for the AI model, particularly for fences due to their subtle visual 

signature in satellite imagery. This led to the development of a specialized fence detection model 

to improve accuracy in identifying these critical landscape features. 

• In many cases, there may be an underlying fence beneath another partition, but the structure 

has been overgrown with vegetation. This creates a hybrid feature that combines characteristics 

of both fences and vegetated partitions, making clear classification difficult. 

4.5.3. Labelling Methodology 



• NDVI values were used to assist with the preparation of the training dataset, particularly for 

vegetation-related features. These were then manually altered for quality control. 

• Polygons were manually drawn around buildings, clouds, and water features. 

• Linear features like land partitions were initially drawn as lines and later converted to polygons 

for more efficient dataset production. All fences were given a buffer of 2m either side. 

• For partitions comprised primarily of thick vegetation, a dynamic approach was used to test and 

adjust buffer sizes based on their NDVI values, saving time manually draining polygons around 

each linear feature, but also being sensitive to the anticipated thickness of the feature. 

 

• In the final model a 7-class polygon dataset was used alongside the large Merge 3x2x1 .tif file. 

 

 

4.5.4. Data Augmentation 

The model trained on Tranche 1 saw a noticeable drop in performance (particularly when applied to 

vegetation) when applied to Tranche 2. This is due to the different seasonal conditions. 

To enhance the model's performance and generalization capabilities, several data augmentation 

techniques were employed: 

180-degree rotations were produced within the “Train Deep Learning Model” to make the model 

agnostic to lighting / shadow conditions. 

When training the model additional augmentations were applied. With each chip (including the 180-

degree rotations) being passed to a further five augmentations (zoom, crop, brightness, rotation, 

saturation applied at random levels between set thresholds). This meant for each original imagery 

chip, an additional 11 variations were trained within the model. 

These techniques, combined with additional training data taken from Tranche 2, and Tranche 3, made 

the later models developed far more robust to new and unseen data. 

4.6 Performance 

Generally, performance of the output model is strong for the wider area. Several classes had 

performance that makes them highly suitable for accurate mapping. Vegetation and Buildings, and to 

a lesser extent, Water and Roads, all performed well enough that the resultant layers can be 

considered as reasonably reliable layers of the area for mapping and analysis.  

Partitions and Fencelines did not perform to the same standard, and while the model is useful for 

highlighting areas where Fences and Other partitions are likely, it did not perform strongly enough to 



produce authoritative mapping of these features. Nonetheless it plays a useful role in their detection 

and general mapping of their prevalence across the area in a range of more general visualisations. 

The final model, trained over 20 epochs, achieved an average precision of 44% across all classes. 

Allowing the model to run for a further 10 epochs would likely have marginally improved the 

performance by a further 1-3% precision but this fell outside the scope of this study. 

However, it's crucial to understand what precision means in the context of object detection and how 

it relates to the model's practical performance.  

 

 

4.6.1 Understanding Precision and IoU 

In object detection tasks, precision is intimately tied to the concept of Intersection over Union (IoU). 

IoU measures the overlap between the predicted bounding box and the ground truth bounding box. 

Precision, in this context, isn't simply about the number of correct detections, but rather how 

accurately the output polygons align with the actual feature geometries. 

IoU is calculated as: 

IoU = Area of Overlap / Area of Union 

A higher IoU indicates a better match between the predicted and actual object boundaries. Typically, 

a detection is considered "correct" if its IoU exceeds a certain threshold (often 0.5, but this can vary). 

4.6.2 Class-Specific Performance 

The performance of each class, within the 7-class general model is as follows: 

1. Vegetation: 50.7% 

2. Buildings: 71.6% 

3. Partitions: 16% 

4. Fencelines: 4% 

5. Roads: 27% 

6. Water Bodies: 23.3% 

7. Clouds: 55.8% 
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The dedicated fence detection model performed at 16%, which will be further improved upon further 

in a subsequent iteration, utilising the newly detected fences as additional training data. 

4.6.3. Interpreting Performance 

It's important to note that the seemingly low precision for some features doesn't always indicate poor 

detection. In reality, fencelines are very thin, linear features. For practical detection purposes, larger 

buffer zones were used around these features allow nearby contextual information to support their 

detection. While this approach successfully brings fencelines to our attention, it significantly impacts 

the precision score due to the mismatch between the oversized output polygons and the actual thin 

features. 

This scenario underscores a key point: the precision score, as calculated based on IoU, may not always 

reflect the practical utility of the model for certain feature types. In our use case, detecting the 

presence and location of fencelines is sufficient, even if the precise boundaries of the resultant 

polygons don't perfectly match the physical footprint of the fenceline across its thickness. 

Nonetheless a score of 4% for fencelines fell significantly below what was hoped and these features 

were retrained for 30 cycles in a dedicated model with fine-tuned augmentation parameters. An 

expanded training dataset with 65,000 fence image chips was used. This improved the precision score 

from 4% to 16%. Whilst this performance makes the model much more useful for detection, the 

performance still falls short of a definitive mapping solution, particularly due to the presence of small 

tracks frequently triggering false positives. 

This could potentially be offset in the future by using a higher number of negative samples during 

training, exposing the model to a greater range of images that do not contain fencing but do contain 

visually similar objects. 

 

 

Comparison between Raw Imagery and Successive Fence-Detection Models 

   
Manually Drawn Fences General Model (4% precision) Dedicated Model (16% precision) 

 

4.6.3. Practical Implications 

When considering the overall precision of 44%, it's essential to consider: 



• The complexity of satellite imagery analysis, particularly with the feature types chosen 

• Visual similarity between linear feature types 

• The specific requirements of our use case 

• Top performing RCNN models placed within the 30 – 55% precision range against the COCO 

benchmarking dataset. DETR Models, using transformers, performed as high as 66, but were 

considered impractical for this study due to their computational cost1. 

The model's strong performance in detecting buildings (71.6% precision) and vegetation (50.7% 

precision) suggests it's particularly effective for providing definitive footprints of these larger, more 

distinct features. 

For linear features like roads (27% precision) and fencelines (4% precision), the lower scores likely 

reflect the challenges in precisely delineating these narrow objects rather than a failure to detect 

them. 

In practice, the model's performance at a low confidence threshold has been observed to be very 

good, indicating that it's effectively identifying features of interest, even if the exact boundaries aren't 

perfectly aligned. 

This discrepancy between numerical precision and practical utility highlights the importance of 

considering domain-specific evaluation criteria and the end-user requirements when assessing model 

performance in specialized applications like satellite imagery analysis. 

 
 
 
 
 
 
 
4.6. Limitations 
 
4.6.1. Feature Detection Challenges 

• Reliable detection of lightweight fence line structures proved difficult, necessitating a broader 

approach to detecting linear partitions. This may have led to some inaccuracies in identifying 

specific types of land partitions. Overall the model detections of fences cannot be relied on to 

provide definitive mapping of features, but are useful for providing a more generalised risk map 

for detections. 

• The high degree of variation in fencing structures and the incorporation of vegetation in 

partitions complicated the classification process, potentially leading to misclassifications or 

missed detections.  

• In many cases many features were detected as a mixture of both hedge partitions and fencelines 

(visible posts, no vegetation). 

• In the case of linear shapes, the output polygons are usually significantly larger than the shape 

itself. Where two partitions run in parallel (e.g. either side of a small road) they frequently 

 
1 https://paperswithcode.com/task/object-detection 



overlap, making calculations such as total fence length impossible to definitively calculate. In 

future testing with various buffer sizes would be highly desirable to determine an optimum 

buffer size. 

• In some cases, very small tracks and boundaries between neighbouring fields were erroneously 

classified as linear partitions. Harsh earth banks to the sides of larger roads also were frequently 

misclassified. Generally, performance with a high confidence threshold (e.g. 50%) resulted in lots 

of missing linear detections and inference with a low confidence threshold (e.g. 25%) resulted in 

a large number of false positives, mostly from tracks and road edges. 

Example of Erroneous Fence Detections 

 
 

• In some cases, the output correctly detected a feature but the mapping of the polygon to the 

features boundaries was coarse, requiring additional post-processing and manual review.  

 

 

 

Examples of Fences alongside satellite viewpoint 

  



  
Example 1 Example 2 

 

4.6.2. Data Limitations 

• The imagery tranches were taken under different seasonal conditions, which initially posed 

challenges for model generalization across different vegetation states. This could affect the 

accuracy of vegetation-related classifications across seasons. 

• The training dataset, while comprehensive, only covered about 7.5% of the total imagery 

provided and covers a very specific geography. This limited sample size may restrict the model's 

performance in areas with significantly different characteristics from the training data. Future 

tests will apply the same model to imagery of the greater Mara landscape to tests its applicability 

in neighbouring areas. 

• The project provides a snapshot of the landscape at specific points in time. Without regular 

updates to the imagery and model, the analysis may quickly become outdated in rapidly changing 

environments like Nyakweri Forest. 

• Only a few areas overlapped between Tranche 1, 2, and 3, preventing a comprehensive change 

analysis being conducted over the whole area without additional imagery at a later date. 

4.6.3. Practicality Limitations 

• The raw output cannot be relied upon as a definitive map without further processing and 

interpretation. Whilst vegetations and buildings are provided with a high degree of confidence, 

linear features, particularly fence lines proved challenging to reliably detect. 

• While the model can detect physical features, it may not directly translate to habitat suitability 

for species like the Giant Pangolin without additional contextualisation and analysis. 

• Confidence levels vary across detected objects. A more nuanced visualization could be created 

calculating probability mass (as a function of polygon area x confidence and then aggregating 

these values within binned geographic areas. 

• Without ground-truthing and validation, there is potential for false positives or negatives in the 

feature detection, which could impact conservation decision-making if not properly accounted 

for. 

• The output should be considered a tool to guide further investigation and field work, rather than 

a standalone product for making definitive conservation decisions. 

4.7. Optimal Confidence Thresholds 



Whilst detecting objects at a low threshold was desirable to establish a baseline feature set, 

subsequent analysis demonstrates that further refinement above these thresholds is desirable for a 

high-quality feature output. Whilst these thresholds were not applied within our analysis for 

consistently, they have been applied to output feature datasets that will be shared for mapping 

purposes. The optimal thresholds above which features are retained for mapping for each class is as 

follows: 

1. Vegetation: 65% 

2. Buildings: 45% 

3. Partitions: 55% 

4. Fencelines: 22% 

5. Roads: 60% 

6. Water Bodies: 50% 

7. Clouds: 85% 

4.8. Post-Processing. 

As standard all features under 5m2 were deleted to eliminate very small standalone trees and small 

fence and road misdetections 

Buildings were regularised to form more coherent shapes around the target features. The result is 

not perfect, particularly with complex shapes, but is a noticeable improvement upon the original 

geometry. 

Building Regularization 

  
Before Regularisation After Regularisation 

 

A process also was derived to convert the linear feature polygons to line features. 

• Polygons were generalised to capture their general direction and remove irregularities 



• The Collapse Hydro polygons tool was run to capture centrelines 

• Very short segments were deleted to improve output 

Example Output of Linear Features 

  
Raw Imagery Detected Partitions (Yellow) and (Red) 

 

4.9. Dissolved Features with Retained Confidence 

Many output features are larger than the 224x224 pixel processing size however the model produced 

output polygons no larger than 224x224 pixels in size. This left many larger objects comprised of a 

number of constituent output polygons. In order to smooth output, a degree of overlap was 

maintained.  

Comparison Between Raw Output and Dissolved Features 

  
Raw Output Features Dissolved Features 

 

However, in order to achieve clean output polygons of the feature classes, objects were dissolved by 

class so overlapping features formed one feature class. A Summarize Within process was then applied 



across the dissolved features and the constituent features to establish a mean confidence of the 

constituent polygons. This was weighted by the proportion of the summarized constituent layer 

within the dissolved polygons and grouped by class. 

4.10. Test Time Augmentation (TTA) 

Test Time Augmentation is a technique used to improve the accuracy and robustness of model 

predictions during the inference phase. 

• Image Transformations: The input image was subjected to multiple transformations flip and 

rotate transformations. 

• Multiple Inferences: The model was run on each transformed version of the image. 

• Aggregation: The results from all transformations were combined, taking the mean shape and 

confidence of the outputs. 

• Thresholding: Outputs falling below the process confidence threshold (set at 50% for the PCA) 

were discarded. 

In our Nyakweri Forest analysis, TTA was employed to refine the output polygons for several key 

classes, particularly in the Priority Conservation Area (PCA). 

TTA resulted in smoother, more accurate polygon boundaries for detected features and helped 

eliminate many spurious detections. This had a dramatic effect on reducing object “sprawl” at lower 

confidence thresholds. TTA was particularly beneficial for classes with complex shapes or high 

variability, such as vegetation boundaries and linear features. While TTA improved overall quality, it 

sometimes resulted in the loss of smaller or less confidently detected features. 

It is important to note TTA significantly increased processing time, making it impractical to apply to 

the entire study area within the project's scope. The performance impact of TTA increases 

exponentially at lower confidence threshold. 

Due to these computational constraints, TTA was primarily applied to the 130 km2 Priority 

Conservation Area and run with a 50% confidence threshold, as opposed to the 25% confidence 

threshold employed across the entire 1018km2 study area without TTA.  

The most effective use of TTA however, would have been to run inference at a low confidence 

threshold, such as 15% and then delete output polygons below class specific thresholds prior to 

running the dissolve and summary process. 

Comparison of Output using TTA 



  
Without TTA With TTA 

Example Output Using TTA 

  
Raw Imagery Detection of Wire Fence using TTA 

 

  



 

Leveraging AI and Remote Sensing for Conservation 

Part 2: Analysis of Data 

Ruari Bradburn, Chief Technology Officer, Langland Conservation 

1. Introduction 

The main purpose of the analysis was to identify indicators of habitat degradation and their 

implications on Giant Pangolin conservation. 

The two key areas of focus were forest loss and fence electrification. Recent imagery shows that both 

within and on the peripheries of the priority conservation area an alarming amount of forest is still 

being lost in a relatively short time, posing serious questions about the long-term ecological outlook 

of this area. 

Understanding what areas of forest remain, and how fences can be targeted to improve connectivity 

between remaining areas of woodland, forms the central basis of this analysis. 

In addition to protection and de-electrification, this study suggests priority areas to replant trees to 

counter habitat fragmentation. This is usually targeted towards reinforcing thin veins of connecting 

forest or bridging gaps between major disconnected forest blocks across the shortest or most 

undeveloped path. 

2. Two-Stage Analysis 

 Analysis was conducted in two stages. First a general analysis of the wider area was conducted using 

the data resulting from running the model at 25% confidence without using Test Time Augmentation 

(TTA). Then a detailed analysis of the Priority Conservation Area was conducting using data resulting 

from the model at 50% confidence with TTA enabled. Whilst some less confidently predicted features 

may be absent from this iteration, the data is provided with a greater degree of confidence and a 

significantly lower rate of false positives 

In the PCA area a calculation was done to weight scores by confidence but this caused a negligible 

variation in the output visualisations so was omitted here. 

3. Remaining Forest Cover 

The PCA represents the largest concentration of remaining intact forest cover within the wider area. 

There remains substantial forest to the immediate north of the PCA, however signs of landscape 

change are widespread, such as felled trees or scars on the soil from charcoal production. In the 

Priority Conservation Area 21.3km2 of tree cover remained in March 2024 out of the area total of 

49.2km, representing 43.2% of the total area. Of this: 

• 18.4km2 was comprised of areas of tree cover 1000m2 or more in size, or 37.3% of the total area. 



• 12.1km2 was comprised of areas of tree cover of 0.5km2 or more in size, or 24.6% of the total 

area. 

• 8.3km2 was comprised of areas of tree cover 1km2 or more in size, or 16.9% of the total area. 

  

4. Forest Loss 

Forest loss stands as the most pressing conservation challenge in the Nyakweri Forest landscape, 

directly impacting the Giant Pangolin population and the overall ecosystem health. The Nyakweri 

Forest landscape has been eviscerated by deforestation over the last two decades, losing more than 

60% of its tree cover since 2001. Most of this change has occurred since 2012 and follows a steady 

pattern of loss moving from the north of the area to the south. 

Once a vibrant network of large contiguous forest, the area has been reduced to a mosaic of thin 

veins of tree cover and disconnected forest blocks. In addition to widespread conversion of large 

blocks to agricultural land, there is also a consistent pattern of trees being felled in small numbers 

across the area, “nibbling” away at remaining forest blocks. The sum of this activity across landscape 

is the consistent and continued erosion of its viability as a pangolin habitat. 

Our analysis of forest cover change using high-resolution satellite imagery and AI-driven forest 

detection provides the most accurate and up-to-date available data on remaining forest cover in this 

area.  

It also confirms that deforestation and habitat fragmentation is continuing to occur at an 

unsustainable rate, including within the PCA. 

 

 

 



 

Google Earth Imagery Over 10 Years 
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2015 2016 2017 
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2021 2022  

 



 

 

 

Our imagery covers different areas of the Nyakweri Forest at different times, making a comprehensive 

analysis at high resolution impossible. However, between the imagery days there are key areas of 

overlap, including 29.8km2 of the Priority Conservation Area, allowing an effective change analysis in 

72% of the PCA. 

Seasonal variability between the two dates complicates the accurate measurement of loss due to the 

rainy season meaning vegetation is much lush and full during the spring. The total area of detected 

tree cover was virtually identical across both dates. 

However, when small trees were removed from the data and blocks at least 100mx100m in size were 

counted, it proved an extremely useful step in highlighting specific areas of loss for further manual 

confirmation. 

A difference map was created with areas of loss between the October imagery marked in red. 

Examples of Recent Forest Loss within the Priority Conservation Area (North-West Corner) 

  
Oct 2023 Mar 2024 

Close-Up Example Recent Forest Loss within the Priority Conservation Area 

  
Oct 2023 Mar 2024 



 

 

 

 

 

 

 

 

 

 

Manually Confirmed Sites of Forest Block Loss between October 2023 and Mar 2024 

October 2023 

 

 

Mar 2024 

 
 

Most large area loss detections usually correlated to ongoing felling of the remaining forest blocks 

and rapidly improved the rate and reliability with which they could be detected. After manually 

verifying felling activity  



The prevalence of scars left behind by other previous felling activity underline a persistent and historic 

pattern of loss. 

Using the AI-driven object detection model, we identified buildings within the PCA. We then analyzed 

their proximity to areas of confirmed recent deforestation. The process involved: 

• Identifying clusters of buildings (potential settlements or homesteads) 

• Creating buffer zones around recent deforestation sites (100m radius) 

• Intersecting these buffer zones with the identified building clusters 

This analysis revealed several key findings 70% of the recent deforestation sites were within 200m of 

buildings 

• There remains very little space within the PCA where there remain large gaps between buildings 

– 87% of the PCA falls within 300m of a building. The 13% of the PCA that falls out of 300m 

proximity of a building accounts for 20% of the remaining tree cover and 22% of the remaining 

tree cover in blocks larger than 100x100m. 

• In the areas where buildings were further away, there were visible signs of historic deforestation 

between the buildings and the deforestation sites, indicating a continued pattern of erosion. 

Due to the fragmented nature of the habitat and the fact communities are interspersed throughout 

the priority area, a community-centric solution, as has been adopted by The Pangolin Project, must 

play a central role within wider conservation efforts. Working alongside communities, fostering 

positive attitudes towards conservation, and incentivising the safekeeping of the remaining forest is 

the principal way that further damage can be mitigated. 

This analysis has identified which communities sit in close proximity to active sites of deforestation 

where trees were felled between October 2023 and March 2024. 

Clusters of housholds in proximity to recent deforestation 



 
 

 

5. Connectivity Analysis  

The connectivity analysis aims to identify and prioritize areas where limited potential reforestation 

efforts to improve habitat connectivity for wildlife, particularly the Giant Pangolin.  

The process was conducted as follows: 

Identify significant forest patches: 

• Tree cover areas larger than 100x100m² (10,000m²) were identified as significant forest patches. 

• A 50m buffer was drawn around these significant forest patches. 

Identify potential connection areas: 



• The intersecting areas of these buffers were kept, as they represent potential corridors between 

forest patches. 

• Areas where these intersections crossed roads were highlighted in red, indicating potential 

wildlife crossing points, as well as were reforestation efforts are likely unfeasible due the 

importance of the road to local communities. 

Account for human settlements: 

• A 50m buffer was created around households (buildings). 

• This household buffer was then erased from the tree cover intersect areas. 

Identify priority areas for community engagement: 

• The resulting areas represent potential reforestation zones that could connect existing forest 

patches while minimizing conflict with human settlements. 

• These areas are highlighted as priority locations for engaging local communities in reforestation 

efforts. 

This analysis could help conservation efforts by: 

• Identifying gaps in forest cover that, if filled, could significantly improve habitat connectivity. The 

biggest opportunities for reforestation likely fall within the centre and west of the PCA. Whilst 

the most intact forest block falls to the east, a major road likely prohibits reconnecting it to the 

other areas. 

• Highlighting areas where wildlife might be at risk when crossing between forest patches (e.g., 

road crossings).. 

• Providing a data-driven approach to prioritize areas for reforestation and community 

engagement efforts. 

 

 

 

 

 

Connectivity Analysis 

Tree cover areas above 100x100m2 identified 50m Buffer Drawn 



  
Intersecting Areas Kept (red where over roads) 50m Buffer over Households 

  
Household Buffer Erased from Tree Cover Intersect Communities to engage regarding reforestation 

  
  

 



6. Analysis of Fencing 

The first iterations of the model, as well as the final 7-class model had poor performance for fences, 

necessitating a bespoke fence-specific model with a greatly expanded training dataset for this class. 

Due to the difficulty accurately mapping fences using the model, the model was used primarily for general 

fence detection. Once the fences were detected, they would be hand-drawn within the PCA and surrounding 

area to create a comprehensive map of fence lines. This had the added advantage of generating high-quality 

training data that will be used to train successive versions of the model. 

Comprehensive Fenceline Map (Manually Drawn, Based off Detections) 

 
 

Whilst this does not indicate whether the fences are electrified, it provides a useful starting point to identify 

priority areas for ground verification and community engagement. 

In order to achieve this fence lines within 100m of remaining forest were filtered. From here nearby 

homesteads near those fence networks were grouped into communities and highlighted for engagement. 

Most such communities lie within the western area of the PCA, which is has the highest concentration of 

fences.  

 

 

 



Fenceline Analysis 

Fences within 100m of forest filtered Fencing Areas buffered to 200m 

  
Communities within 200m of a fence identified Example of identified communities / homesteads 

  
 

7.  Annex 

This annex provides a series of visualisations for the output data. It covers a series of visualisations 

for both the wider analysis performed at 25% confidence without TTA, and the detailed analysis of 

the PCA conducted at 50% confidence with TTA enabled. 

Note that whilst the area coverage for fences and partitions is a very good indicator of relative density, 

due to the oversized bounding boxes, the numbers of area coverage to not correlate to an accurate 

real-world metric. 

Full resolution images and raw data are available on request. 

 

 

7.1.1. Wide Area Analysis - Tree Coverage and Feature Count 



 

 

7.1.2. Wide Area Analysis - Building Coverage and Feature Count 



 

 

 

 

 

7.1.3. Wide Area Analysis – Partition Coverage and Feature Count 



 

 

 

 

 

 7.1.4. Wide Area Analysis – Fence Coverage and Feature Count 



 

  

 

 

7.1.5. Wide Area Analysis – Road Coverage and Feature Count 



 

  

 

 

7.1.6. Wide Area Analysis – Road Coverage and Feature Count 



 

 

 

 

7.2.1. Priority Conservation Area Analysis – Tree Coverage and Feature Count 



 

 

 

7.2.2. Priority Conservation Area Analysis – Building Coverage and Feature Count 



  

 

 

7.2.3. Priority Conservation Area Analysis – Partition Coverage and Feature Count 



  

 

 

7.2.4. Priority Conservation Area Analysis – Fence Coverage and Feature Count 



  

 

 

7.2.5. Priority Conservation Area Analysis – Road Coverage and Feature Count 



 

 

7.2.6. Priority Conservation Area Analysis – Water Coverage and Feature Count 



 


